Tiếp theo loạt bài viết giới thiêu những nghiên cứu kinh điển về cân bằng tổng thể và lý thuyết trò chơi. Bài viết này giới thiệu một số quy tắc của trò chơi và ứng dụng của những lý thuyết này trong thực tế.
1. Tình huống chơi và quy tắc của trò chơi

  • Một cách chung, người ta có thể nói rằng đặc trung của “Tình huống chơi” (situation de jeu) là mỗi người chơi đối mặt không ngẫu nhiên với một hoặc nhiều người chơi khác, mỗi người đều theo đuổi mục đích riêng của mình. Một trò chơi do vậy là một tình huống phụ thuộc chiến lược lẫn nhau (interdépendance) (người chơi sẽ không thể xử sự nếu hành động của những người chơi khác có thể được coi như là định sẵn và độc lập với những lựa chọn riêng của anh ta).
  • Theo suy nghĩ này, những “trò chơi chiến lược” – khác với những trò chơi trái đạo  (trò chơi giả), ứng với lựa chọn tốt nhất trong một tình huống mà trong đó, một “người quyết định” nghiên cứu lựa chọn tốt nhất trong một tình huống khó dự kiến, tức là đối diện với nhiều khả năng (trạng thái tự nhiên) không thể thực hiện được (ngoại trừ hình thức phân phối khả năng chủ quan ngầm định ở Savege).

Không hơn trạng thái tự nhiên của trò chơi, người quyết định không đưa ra chiến lược thực sự: do vậy anh ta tìm cách thích nghi tốt nhất với một tình huống.

  • Sự phụ thuộc chiến lược tương ứng với một mối quan hệ logic tổng thể khác: sự đối mặt mong muốn và lợi ích đối kháng giữa ích nhất hai người chơi (thường là với số lượng n). Trên cơ sở này những tình huống chơi có thể được phân biệt theo nhiều tiêu chí.
  • Những chọn lựa có thể duy nhất hoặc lặp lại nhiều lần.
  • Những chọn lựa có thể là đồng thời hoặc kế tiếp nhau.
  • Lợi ích của những người chơi có thể ít nhiều trái ngược.
  • Thông tin mà người chơi nắm được có thể là “hoàn hảo” (nếu của yếu tố ngẫu nhiên không can thiệp) hoặc “không hoàn hảo”. Nó cũng có thể “trọn vẹn” (hiểu biết toàn bộ các quy tắc của cuộc chơi) hoặc không trọn vẹn. Nó có thể là như với nhau không tương xứng giữa những người chơi.
  • Số lượng người chơi có thể ít hoặc nhiều.
  • Có thể (hoặc không ) có “khả năng bàn bạc” (thậm chí có thể đạt tới thống nhất với nhau) trước cuộc chơi (trước khi mỗi người đưa ra quyết định của mình).
  • Có thể (hoặc không) có khả năng những người chơi thanh toán thành các “quy tắc của trò chơi”. Chúng được mô tả bởi ba tập hợp sau:
    • Tập hợp những người chơi.
    • Tập hợp những chiến lược mà mmỗi người chơi áp dụng.
    • Tập hợp những kết quả ứng với mỗi chiến lược này (sự đánh giá dưới những hình thức khác biệt: tiền, thị phần, ích lợi, v.v…)

2. Các loại trò chơi khác nhau.
Có hai loại trò chơi:
Các trò chơi không hợp tác – les jieu non coopératifs (tổng kết quả trong trò chơi bằng không): sự thắng cuộc người chơi này (hay một người chơi) tương ứng là sự thua cuộc của người chơi hay nhóm khác thua, tổng lượng kết quả của mọi người chơi bằng không. Như vậy, đã có một sự đối lập hoàn toàn về lợi ích. Nguyên mẫu của trò chơi này là cuộc đọ sức tay đôi – duel (cuộc chơi của hai người chơi mà tổng lượng bằng không).
Các trò chơi có hợp tác – les jieu non coopératifs, khi đến một mức độ nào đó giữa các người lớn hay nhòm chơi thống nhất hoặc thông hiểu lẫn nhau. Đặc biệt, đây là trường hợp của những trò chơi mà tổng lượng kết quả khác không, jeu à somme non nulle với khả năng giao tiếp. Từ đó những liên minh có thể được thành lập.

Trong trường hợp thứ nhất
, giải pháp của trò chơi gồm chiến lược tối đa hoặc tối thiểu. Mỗi người chơi sẽ cố gắng giảm thiểu những kết quả tồi tệ nhất (hay tối đa những lợi ích thấp nhất) được đề ra trong mỗi chiến lược: logic tình huống chứng tỏ quy luật này.
Trong trường hợp thứ hai, giải pháp của trò chơi có thể được đánh giá khi tìm hiểu, một cách có hệ thống, toàn bộ các chiến lược liên minh (mọi liên minh có thể được hình thành, theo các quy tắc của trò chơi). Giải pháp này có thể được mô tả thông qua khái niệm trung tâm hay hạt nhân, gồm tổng thể những khoản trợ cấp (các cấu trúc phân phối lại các thành quả giữa những người chơi). Không bị phong tỏa bởi bất kỳ một liên minh nào, một liên minh phong tỏa sự hình thành khoản trợ cấp khi mà khoản này mang lại cho tất cả các thành viên của nó ít hơn phần mà liên minh này có thể dành cho được một mình, có tính đến các nguồn lực riêng (cái mà người ta gọi là “trình độ  an ninh” – niveau de séccurité).
Hình thái trò chơi hợp lý nhất trong các khoa học xã hội thường là những trò chơi với người chơi với các khả năng liên minh; qua hình thức này mà người tiến bộ quyết định nhất đã được hoàn thành.
SAGA - Nguyên lý trò chơi3. Ứng dụng của lý thuyết trò chơi
Nếu trước kia chỉ giới hạn trong các hoạt động quân sự (mô hình chạy đua vũ trang, mục tiêu phòng bị đại phương, chiến tranh trên không hay trên biển, phân phối theo không gian các lực lượng…), lý thuyết trò chơi hiện nay đã có những ứng dụng rộng rãi trong nghiên cứu thị trường, nhất là những thị trường quốc tế: thị trường nguyên vật liệu, đặc biệt là dầu mỏ, thị trường hối đoái …. Nó cho phép phân tích một cách hiệu quả những hình tháI cạnh tranh khác nhau (trò chơi sự sống sót kinh tế – survivance économique, tức là loại bỏ những đối thủ cạnh tranh, và khái quát hơn, phân tích cạnh tranh trong mô hình
độc quyền tập đoàn (về giá hay về sản lượng, phối hợp hay không phối hợp). Nó cũng được sử dụng để hình thức hóa cho việc lên kế hoạch ở các đô thị (trò chơi đô thị – jeux urbains).

  • Hơn cả một công cụ phân tích dự báo và chuẩn tắc (phản ứng như thế nào trong một tình huống định sẵn?), lý thuyết trò chơi đã trở thành một công cụ “mô tả” (logic tình huống là gì?) hoàn thiện và khái quát hoát những lý thuyết đang tồn tại, mà sức mạnh của nó được thừa nhận đặc biệt trong điều kiện sản phẩm tập thể (cộng sản) của nền kinh tế quốc dân và lý thuyết phân phối lại thu nhập quốc dân.
  • Sức mạnh của lý thuyết trò chơi là ở chỗ nó nhấn mạnh lên khái niệm cá thể xã hội: “không phải là hành động cá nhân mà là thái độ phức tạp của một đối tượng trong số những đối tượng khác nhau” (G.G. Granger).

Giữa kinh tế vi mô và vĩ mô tồn tại  không phải chỉ là một, mà là nhiều hành động tập thể ở cấp độ trung gian (kinh tế các ngành) mà thông qua những sự chồng chéo lẫn nhau và những lồng ghép tiếp nối, hình thành nên những cấu trúc của xã hội trong tồng thể của nó.

Nguyễn Văn Hoàng © SAGA – www.saga.vn

 

0 Comments

You can be the first one to leave a comment.

Leave a Comment

 




 
*